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ABSTRACT: Impressive progress has been made in the past decade in the
study of technological applications of varied types of quantum systems. With
industry giants like IBM laying down their roadmap for scalable quantum
devices with more than 1000-qubits by the end of 2023, efficient validation
techniques are also being developed for testing quantum processing on these
devices. The characterization of a quantum state is done by experimental
measurements through the process called quantum state tomography (QST)
which scales exponentially with the size of the system. However, QST
performed using incomplete measurements is aptly suited for characterizing
these quantum technologies especially with the current nature of noisy
intermediate-scale quantum (NISQ) devices where not all mean measurements
are available with high fidelity. We, hereby, propose an alternative approach to
QST for the complete reconstruction of the density matrix of a quantum system in a pure state for any number of qubits by applying
the maximal entropy formalism on the pairwise combinations of the known mean measurements. This approach provides the best
estimate of the target state when we know the complete set of observables, which is the case of convergence of the reconstructed
density matrix to a pure state. Our goal is to provide a practical inference of a quantum system in a pure state that can find its
applications in the field of quantum error mitigation on a real quantum computer that we intend to investigate further.

1. INTRODUCTION

The rapid advancements toward the development of large scale
quantum computing devices in recent years require efficient
methods that can validate information processing on these
devices. Quantum state tomography (QST) is one such
standard data-driven technique that can characterize the
quantum mechanical state of the system based on the
information on the expectation values of a complete set of
observables.1−5 However, the increase in the size of quantum
systems poses a critical limitation on QST due to the
exponential scaling of the number of parameters required to
reconstruct a quantum state that is a tensor product of qubits.
In practice, full QST for large quantum systems has been
performed on not more than 10-qubits.6

We are currently in the era of noisy intermediate-scale
quantum (NISQ) computing7 which restricts the use of a large
quantum device for practical purposes such as recovering the
true quantum state, owing to the inherent noise in the result.
Measurements on these NISQ devices are therefore of limited
fidelity, and in certain cases, we have access to only a limited
number of observations. This along with the scaling problem
makes QST intractable in real experiments except for small
quantum systems. Various techniques have been suggested to
address the underlying scaling problem as well as to mitigate
against imperfect measurements.8 Some of the proposed

tomography methods are matrix product state tomography,5

neural network tomography,9−12 quantum overlapping tomog-
raphy,13 shadow tomography.14,15 Apart from the conventional
tomography techniques, there have been approaches that try to
estimate the quantum state based on incomplete measure-
ments.16−18 Some of these methods include quantum state
estimation using the maximum likelihood estimation19,20 and
Bayesian state estimation.21,22

In our previous work,23 we proposed an alternative approach
to QST based on the maximal information entropy formal-
ism17,24,25 using a finite but incomplete set of measurements
that serve as the constraints of the problem. These are special
kinds of constraints that correspond to the mean values of
populations and coherences. We showed that using the
maximal entropy approach we can obtain an accurate
prediction of an unknown mean measurement (a probability)
using a pair of known mean measurements (a probability and a

Received: July 1, 2021
Revised: August 6, 2021

Articlepubs.acs.org/JPCA

© XXXX American Chemical Society
A

https://doi.org/10.1021/acs.jpca.1c05884
J. Phys. Chem. A XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

Sa
br

e 
K

ai
s 

on
 A

ug
us

t 1
9,

 2
02

1 
at

 1
7:

07
:1

1 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rishabh+Gupta"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Raphael+D.+Levine"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sabre+Kais"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpca.1c05884&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c05884?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c05884?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c05884?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c05884?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c05884?fig=tgr1&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jpca.1c05884?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JPCA?ref=pdf
https://pubs.acs.org/JPCA?ref=pdf


coherence). In addition to the validation of the results of
quantum calculations performed on NISQ devices using QST,
there are a variety of further circumstances where the mean
values of populations and coherences are of primary
interest.26−28 With an incomplete set of known mean
measurements, maximizing the von Neumann entropy16,29−31

of the system provides an additional constraint to obtain a
unique solution for the state determination. In this paper, we
extend this approach to reconstruct the complete density
matrix of an n-qubit quantum system with a special reference
to a pure state using the expectation values of N observables
where N = 2n. The unique feature of our approach is that we
consider pairwise combination of the known probability with
the known coherence to predict an unknown probability using
the maximal entropy formalism and repeat this process until all
the probabilities for all the n qubits have been determined.
Once all the probabilities have been calculated, we employ the
same approach on the pairwise combinations of the
probabilities to determine all the unknown coherences. The
detailed description of the method is provided in section 2. To
validate and support our theoretical proposition, we conducted
numerical simulations in IBM’s qiskit.32 We also implemented
our approach on the IBM quantum computing chip that can be
easily accessed through the IBM quantum experience.33 The
results in section 3 show the accuracy of our approach when
we use the expectation values of observables obtained from
noise-free statevector_simulator backend in Qiskit for the
reconstruction of the complete density matrix for quantum
systems ranging from 2 to 10 qubits using the proposed
approach. We intend to further analyze this approach for
applications in the field of quantum error correction and
compare it with the available error correction codes.34,35

2. METHODS
A unique characterization of a quantum state requires
measuring the expectation values of a complete set of
observables. For the state vector of a quantum state with N
entries, this complete set is defined by 2N − 1 independent
parameters whose knowledge is required to uniquely character-
ize the quantum state. For example, measurements of
expectation values of 16 operators are required to completely
describe a 2-qubit quantum system in a pure state:

{| ⟩⟨ | | ⟩⟨ | | ⟩⟨ | | ⟩⟨ | | ⟩⟨ | | ⟩⟨ |
| ⟩⟨ | | ⟩⟨ | | ⟩⟨ | | ⟩⟨ |

| ⟩⟨ | | ⟩⟨ | | ⟩⟨ | | ⟩⟨ | | ⟩⟨ | | ⟩⟨ | }

1 1 , 2 2 , 3 3 , 4 4 , ( 1 2 , 2 1 ),
( 1 3 , 3 1 ), ( 1 4 , 4 1 ),

( 2 3 , 3 2 ), ( 2 4 , 4 2 ), ( 3 4 , 4 3 ) (1)

The expectation values of the above operators correspond to
the probabilities and coherences in the 2-qubit system.30 The
maximal entropy formalism24 seeks to determine a probability
distribution that is consistent with the known average values of
certain operators fk̂ as well as ensuring that the von Neumann
entropy of the distribution be maximal. Combining it with the
method of Lagrange multipliers, λk

17,25 yields the following
form of the density operator:16,31

∑ρ
λ λ

λ̂ = − ̂
l
m
oo
n
oo

|
}
ooo
~
ooZ

f
1

( , ..., )
exp

k k
k k

1 (2)

where λ λ λ= {−∑ ̂ }Z f( , ..., ) Tr(exp )k k k k1 insures the normal-
ization as Tr(ρ) = 1. Thus, even when a complete set of
observables is not available, the maximal entropy formalism

provides a unique characterization of the quantum state
consistent with the given constraints. In this current work, we
start by reconstructing the density matrix of maximal entropy
that corresponds to the case when only two measurements are
available, specifically, a probability and a coherence. In general,
the coherence will be a complex number so it is equivalent to
two Hermitian observables. Based on the maximal entropy
formalism, we can write the Hermitian density operator in
terms of the operators corresponding to the available
observables as

ρ
λ λ λ

λ λ λ̂ = {− | ⟩⟨ | − | ⟩⟨ | − | ⟩⟨ |}
Z

1
( , , )

exp 1 1 1 2 2 1
11 12 21

11 12 21

(3)

where the Lagrange multipliers λk satisfy λ21 = λ12* so that the
density matrix is Hermitian. One can satisfy this by writing the
Lagrange multiplier of the coherences in terms of an amplitude
and a phase, λ12 = |λ12|exp iθ12. The details of the prediction of
an unknown probability from a known probability and a
coherence are presented in our previous work.23 The operators
in the exponent of eq 3 do not commute, so to obtain an
explicit form for the density matrix, we first diagonalize the
Hermitian matrix A corresponding to the exponent term in eq
3 and then express the density operator in terms of the
eigenvalues and eigenvectors of A:

∑ρ
λ λ λ

ϕ ϕ̂ = {ϵ }| |
Z

1
( , , )

exp
i

i i i
11 12 21 (4)

where {ϵi, ϕi} are the eigenvalues and eigenvectors of A
expressed as a function of the unknown Lagrange multipliers in
eq 3. For a 2-qubit system, the density operator, upon
reconstruction from a known probability and a coherence so
that there is only one phase, was shown to take the explicit
form:

∑ρ ϕ ϕ̂ = {ϵ }| |

= | | + | | + + | | + * + * | |

+ + | | +
| |

+
| |

| ⟩⟨ |
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jjjjjj
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jjjjj
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zzzzz

i
k
jjjjj
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{
zzzzz
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Z

Z
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k

1
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1
4 4 3 3 ( ) 1 1 1 2

2 1 2 2

i
i i i

3 4

3 4 3
2

4
2

(5)

w h e r e = ∑ {ϵ }Z expi i , = −
λ
ϵ
*k3
3

12
, = −

λ
ϵ
*k4
4

12
, a =

= ϵ
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| |

+ +
a expk

k k( 1)( 1) 3
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3
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, and = ϵ
*

| |

+ +
b expk

k k( 1)( 1) 4
4

2

4
2

4
2

.

Since the basis operators are orthogonal, the mean measure-
ments correspond to the coefficients of the operators in the
reconstructed density matrix. Therefore,

λ λ λ= = ⟨| ⟩⟨ |⟩ = +
x f

a b
Z

( , , ) 1 111 11 12 21 (6)

λ λ λ= = ⟨| ⟩⟨ |⟩ =
| |

+
| |

i

k
jjjjj

y

{
zzzzzx g

a
k

b
k

Z( , , ) 2 222 11 12 21
3

2
4

2

(7)

λ λ λ= = ⟨| ⟩⟨ |⟩ = * + *
i

k
jjjjj

y

{
zzzzzx h

a
k

b
k

Z( , , ) 1 212 11 12 21
3 4 (8)
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The state defined in eq 5 is a mixed state. This is to be
expected since we only provided information sufficient to
define a pure state of the first qubit. In our previous work, we
have already established that from eq 5 the information about
x22 can be obtained using x11 and x12 following the
determination of the unknown Lagrange multipliers in eq 3.
However, in the case that the density matrix is real valued, we
can also propose that the mean measurement value x12 can be
determined using the same expression if we know x11 and x22
as the mean measurements in (eqs 6−8) are functions of the
Lagrange multipliers (λ11, λ12, λ21) that can be determined
using the expectation values of x11 and x22.
After determining x12 using the proposed approach, we can

similarly determine xij, for real valued coherences, using the
corresponding two probabilities, xii and xjj, at a time. The full
density matrix of a quantum system can be deduced if we have
determined all the coefficients cij in the definition of density
operator in eq 9:

∑ρ ̂ = | ⟩⟨ |c i j
ij

ij
(9)

The coefficient cij is the expectation value of the
corresponding operator |i⟩⟨j| which can be determined, if the
density matrix is real valued, by applying the maximal entropy
approach on the pair of known mean measurements for the
operators: |i⟩⟨i| and |j⟩⟨j|:

= ⟨| ⟩⟨ |⟩c i jij (10)

Therefore, if the density matrix is real valued, by considering
all the pairwise combinations of the N probabilities |i⟩⟨i| and |
j⟩⟨j| and applying the maximal entropy approach over each
such combination, we can determine all the real valued
coherences and determine the state. The number of times the
maximal entropy approach is applied on the pairwise
combinations of the N probabilities to determine all the
coherences is N(N − 1)/2, which is the number of unknown
coherences. In section 2.2.1, we show a more general result,
namely, that also when the coherences are complex valued, it
follows from the representation λ12 = |λ12|exp iθ12 with θ21 =
−θ12 that it is sufficient to know the phases of half of the
coherences in order to construct the phases of the other half.
We show the application of this approach first by
reconstructing the density matrix for the maximally entangled
2-qubit Bell state followed by the reconstruction of a 3-qubit

multipartite entangled wave function. Thereby, we propose a
scheme to also reconstruct the phases of the coherences and
combine it with the maximal entropy approach to reconstruct
the full density matrix for a quantum system in the pure state.
To summarize the method, we start with a certain number of
known mean measurements (for example, N probabilities if the
target state is real; 1 probability and N − 1 coherences if the
target state is complex) and apply the formalism of maximal
entropy on each pairwise combination of the known mean
measurements. Each time we consider a pair of known mean
measurements and apply the maximal entropy formalism, we
get a mixed state with an accurate description of an unknown
mean measurement that is the coefficient of the corresponding
operator term in eq 5. We repeat this process for all the
different pairs of the known mean measurements and
determine all the unknown coefficients cij in eq 10 and thereby
combine everything together to reconstruct the complete
density matrix of the quantum system in a pure state. To verify
that such a process gives us a pure state in the absence of noise
as well as the known mean measurements belonging to a pure
state, we calculate the entropy and trace of the square of the
density matrix at each step of the process as a measure of its
convergence to a pure state in the Results and Discussion.

2.1. Bell State. To reconstruct the density matrix of the 2-
qubit Bell state: | > = | ⟩ + | ⟩B ( 00 11 )1

2
, we just need to

determine the amplitude of the coherences as the target state is
real. Following the approach of considering two probabilities at
a time and applying the maximal entropy formalism to predict
a coherence and repeating this process for all the six pairwise
probability combinations for Bell state, we determine each of
the coherence and combine it as per eq 9 to obtain the
following density matrix:

ρ =

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

0.5 0 0 0.5
0 0 0 0
0 0 0 0
0.5 0 0 0.5

rec

The predicted coherences match exactly with the coherences
of the original Bell state density matrix and, therefore, support
our approach of reconstruction of the density matrix.

2.2. Reconstructing Density Matrix for Multipartite
Entangled States. Moving forward, we consider a system

Figure 1. Plot of the predicted and true mean measurement x12 versus the coefficient α of the state ψ α β γ| ⟩ = | ⟩ + | ⟩ + | ⟩ + | ⟩( 00 01 10 11 )
N

1 for

fixed β = 3 and γ = 3, using the maximal entropy formalism from (a) two known probabilities x11 and x22 and prediction of x12 using maximal
entropy formalism and (b) two known probabilities x11 and x22 and also employing the scaling approach; prediction of x12 using maximal entropy
formalism combined with the scaling technique.
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with more than two nonzero coefficients in the maximally
entangled state. For example, let us consider a 3-qubit
entangled state: ψ| > = | ⟩ + | ⟩ + | ⟩( 100 010 001 )1

3
. Clearly,

in the true density matrix defined for this state, all the
coherence terms will be zero except for the cross terms (⟨|
010⟩⟨100|⟩, ⟨|001⟩⟨100|⟩, ⟨|001⟩⟨010|⟩, and their complex
conjugate) that will be 0.3333. However, when we reconstruct
the density matrix as per the above approach, we obtained the
following density matrix:

ρ =

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

0 0 0 0 0 0 0 0
0 0.3333 0.3286 0 0.3286 0 0 0
0 0.3286 0.3333 0 0.3286 0 0 0
0 0 0 0 0 0 0 0
0 0.3286 0.3286 0 0.3333 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

rec

We see that some errors show up in the determination of
coherences using the maximal entropy approach. The
predicted coherence values further diverge from the true
value if we have more nonzero coefficients of the basis states
defining the maximally entangled state. To further demonstrate
this, we consider a general 2-qubit quantum state with real
amplitudes: ψ α β γ| ⟩ = | ⟩ + | ⟩ + | ⟩ + | ⟩( 00 01 10 11 )

N
1 and

try to predict the coherence x12 using the probabilities x11
and x22 for various values of α and for fixed values for β and γ.
As can be seen in Figure 1a, the prediction of the unknown
mean measurement is highly inaccurate for smaller coefficient
values of α and it improves considerably for larger values. This
is primarily because upon solving the transcendental eqs 6 and
7, the determined value of the Lagrange multiplier λ12 is close
to zero that leads to a numerical singularity while
reconstructing the density matrix as λ12 is in the denominator
when we calculate the projection operators in the eigen basis.
To address this problem, we used a simple scaling approach
described in detail in the Supporting Information. We then
apply the maximal entropy formalism to determine the
unknown coherence. The maximal entropy approach is
invariant under this scaling technique, and it is done to
make sure that the trace of the scaled pairwise density matrix is
unity. Figure 1b shows the accuracy of the prediction of the
coherence using the maximal entropy formalism combined
with the scaling technique for a general 2-qubit quantum
system.
This approach can be followed to reconstruct the full density

matrix of a quantum system with any number of qubits. In the
case of quantum states with real coherences, for the prediction
of an unknown coherence from two known probabilities, we
just need to determine the unknown Lagrange multipliers (λ11,
λ12, λ21) and apply this approach. We repeat this procedure to
consider all possible pairwise combinations of probabilities and
predict all the unknown coherences. Once we determine all the
unknowns, we combine everything together to obtain the
reconstructed density matrix given by eq 9. Therefore, we can
reconstruct the complete density matrix of an N-qubit
quantum system in the case of real coherences from N
probabilities.

2.2.1. Complex Coherence and Phase Estimation. So far,
we have established that the maximal entropy formalism
combined with the scaling technique accurately predicts the
amplitude of coherence from the known probabilities.
However, in the case of complex coherence, we need more
information than just the probabilities as we also need to
determine the phase of coherence which is specific to a
quantum system. To estimate the phase of every coherence
term in the reconstruction of the density matrix, the following
phase estimation algorithm is employed. To demonstrate it, let
us consider a 2-qubit quantum system defined by

ψ α θ β θ

γ θ δ θ

| ⟩ = { }| ⟩ + { }| ⟩

+ { }| ⟩ + { }| ⟩
N

i i

i i

1
( exp 00 exp 01

exp 10 exp 11 )

1 2

3 4 (11)

where α, β, γ, and δ are real coefficients. The coherences are
then defined as

αβ θ θ αβ

αγ θ θ αγ

αδ θ θ αδ

= ⟨| ⟩⟨ |⟩ = { − } =

= ⟨| ⟩⟨ |⟩ = { − } =

= ⟨| ⟩⟨ |⟩ = { − } =

x i ip

x i ip

x i ip

00 01 exp ( ) exp

00 10 exp ( ) exp

00 11 exp ( ) exp

12 1 2 12

13 1 3 13

14 1 4 14

(12)

and so on. p12, p13, and p14 correspond to the phases of the
coherences x12, x13, and x14:

θ θ

θ θ

θ θ

= −

= −

= −

p

p

p

12 1 2

13 1 3

14 1 4 (13)

Now, the phase of the remaining coherence terms of the
density matrix can be estimated if we have information about
the phases p12, p13, and p14:

θ θ

θ θ

θ θ

= − = −

= − = −

= − = −

p p p

p p p

p p p

23 2 3 13 12

24 2 4 14 12

34 3 4 14 13 (14)

Thus, we can determine the phases of all the remaining
coherences using the above approach and then combine it with
the determined amplitudes from maximal entropy approach to
reconstruct the entire density matrix.
Therefore, in the case of complex coherences, for the

prediction of an unknown coherence from two known
probabilities, apart from the determination of the unknown
Lagrange multipliers (λ11, λ12, λ21), we also need to determine
the phase (θ) of coherence. For determining the phase of all
the coherence terms of the density matrix, we need
information about the phase of N − 1 coherence terms as
seen in eq 14. In our previous work, we have shown that we
can accurately predict an unknown probability from a known
probability and a coherence. Therefore, given N − 1
coherences and a probability, we can construct all the
probabilities using the pairwise combination of the known
probability with the known coherences and applying the
maximal entropy approach. After the determination of all the
probabilities, we take the pairwise combination of all the
probabilities and using the above approach for phase
estimation and amplitude determination using maximal
entropy formalism, we construct all the unknown coherences
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and combine everything to obtain the complete density matrix
for a general pure state with complex amplitudes from N
observables (N − 1 coherences and 1 probability).

3. RESULTS AND DISCUSSION
In this current work, we propose to reconstruct the complete
density matrix for a general pure state with complex amplitudes
from N observables (N − 1 coherences and 1 probability)
using the method discussed in section 2. The approach that we
follow can work for a quantum system with any number of
qubits. To test and validate the proposed theory, we conducted
numerical experiments in IBM’s Qiskit,32 which is an open-
source quantum computing platform with prototype quantum
devices to run and simulate quantum programs. We also
implemented the theory on IBM’s quantum computing chip36

and used the measurement data to reconstruct the density
matrix and then compare it with the true result.
3.1. Trace Distance and Fidelity. We considered

different quantum circuits comprising of 2−10 qubits with
random quantum gates as shown in Figure 2 for one sample 6-

qubit circuit and tried to reconstruct the density matrix
followed by its comparison with the true density matrix. The
mean measurements necessary for reconstruction of the

density matrix are obtained from simulating the quantum
circuits. We used the statevector_simulator backend in IBM’s
Qiskit that simulates the quantum circuit without the
consideration of errors and noise.
To distinguish between the two states, the trace distance and

fidelity between the reconstructed density matrix and true
density matrix are calculated for different numbers of qubits.
The results in Figure 3 show that the states match exactly as
the trace distance between the reconstructed state and the true
state is zero and the fidelity is one even for a quantum system
with a higher number of qubits.

3.2. Convergence to Pure State. Two of the most
common parameters to characterize a pure state from its
density matrix (ρ) are entropy(ρ) = 0 and Tr(ρ2) = 1. Our
approach is to reconstruct the density matrix of a quantum
system using two observables at a time and then repeat the
process with different known mean measurements until all the
observables have been determined. At each step, we have more
information about the system which means that we get closer
to reconstructing the pure state, and therefore, the entropy of
the reconstructed density matrix at each step should approach
toward zero and the trace of ρ2 should approach toward one.
The number of repetitions required for complete reconstruc-
tion of the n-qubit quantum system is N(N − 1)/2 where N =
2n. Figure 4 shows the plots of entropy (ρ) and trace (ρ2) at
each step for a 6-qubit system for the sample circuit shown in
Figure 2. The plots validate the convergence of the
reconstructed density matrix to a pure state at the end of the
complete procedure.

4. ERROR ANALYSIS
As we saw in the previous section, we considered trace
distance, between the reconstructed state and the true state, as
a measure to test the performance of our approach. The first
step toward the reconstruction of the density matrix is to
obtain the mean measurement values of the minimum number
of observables required to reproduce the quantum state. These
expectation values can be obtained by running the quantum
circuit on a quantum computing chip or using an efficient
simulator to simulate the expected results. An online platform
for cloud-based quantum computing is provided by IBM
Quantum Experience on which we conducted numerical
experiments to validate our work.
Figure 6 shows a 2-qubit quantum circuit along with a plot

of the trace distance between the true and the reconstructed

Figure 2. Sample 6-qubit quantum circuit with random quantum
gates considered for testing and validating the reconstruction of the
density matrix.

Figure 3. Plots of the trace distance and fidelity between the reconstructed density matrix and the true density matrix.
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state as a function of the rotational angles of the Rx and Ry
gates for the various methods used for getting the input mean
measurements. For simplicity of the calculations, the Rx and Ry
rotational angles are kept the same. However, there is no
limitation on the choice of the rotation angle of the Rx and Ry
gates. The first method that we employed to obtain the mean
measurements was the statevector_simulator backend in Qiskit
in which we can get the final wave function of the simulated
state, and therefore, the probabilities and coherences can be
calculated directly. Since no noise is accounted for in this
procedure, the reconstructed state matches exactly with the
true state, and hence, the trace distance is zero.
Next we considered the noisy quantum circuit simulator

backend in Qiskit, which is the qasm_simulator that
encompasses statistical errors inversely proportional to the

square root of the number of shots given for the circuit to be
simulated. As is reflected in Figure 5, the impact of these
statistical fluctuations is mitigated when we consider higher
number of shots for simulating the quantum circuit on
qasm_simulator. As expected, the reconstructed density matrix
is closer to the true density matrix when higher numbers of
shots are considered for performing the calculations. Also, the
operator for calculating coherence unlike probability is not
directly available for qasm_simulator as well as for the IBM
machine and so we decompose the coherence operator into
tensor products of Pauli matrices as discussed in23,37,38 and
thereby, obtain the coherences.
Lastly, we implemented our approach to reconstruct the

density matrix for the quantum system corresponding to the
state obtained upon running the circuit shown in Figure 6 on

Figure 4. Entropy of the reconstructed density matrix (ρ) and trace of ρ2 as a function of number of steps for reconstructing the full density matrix
of a 6-qubit quantum circuit.

Figure 5. For the 2-qubit quantum circuit in Figure 6, these plots show that as the effect of statistical fluctuations in qasm_simulator is decreased
upon increasing the number of shots, the reconstructed state is closer to the true state. (a) Trace distance between the true and the reconstructed
state as a function of different rotational angles in Rx and Ry gates. (b) Entropy of the reconstructed density matrix as a function of the number of
steps for complete reconstruction.

Figure 6. Trace distance between the true and the reconstructed state for the shown 2-qubit quantum circuit as a function of different rotational
angles in the Rx and Ry gates for the three backends in Qiskit: statevector_simulator, qasm_simulator, and IBM machine.
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the 5-qubit IBM quantum computing chip: IBM Q 5
Yorktown.36 In order to mitigate the measurement errors, we
also employed the Qiskit’s ignis.mitigation.measurement module
which does so by constructing a calibration matrix.
Considering the presence of noise in the quantum chips, the
trace distance plot corroborates our approach of carrying out
quantum state tomography for a general pure state with any
number of qubits.
The current approach assumes that the available mean

measurements belong to a pure state and so, in the presence of
noise, the density matrix constructed out of the noisy data
corresponding to the true state no longer represents a pure
state, and therefore, the reconstructed state (from the noisy
input mean measurements) and the noiseless true state differ
considerably (in certain cases as shown in Figure 6) from each
other. However, the method in itself leads to a single solution
even if we change the order of the pairwise iterations in the
case of noisy inputs. Even in the presence of noise, the method
is scalable for higher number of qubits systems as well. The
noise in the input data affects the convergence of the
reconstructed state to a pure state, and therefore, we would
not get the same level of accuracy while reconstructing the
density matrix with noisy mean measurements as the input for
the calculations. The accuracy of the method is sensitive to the
accuracy of the input mean measurements obtained from the
various input methods considered for the density matrix
reconstruction. Since the errors in the mean measurements
obtained from a real prototype IBM quantum chip are
completely random, these errors are reflected while calculating
the trace distance between the reconstructed state and the true
state in Figure 6.

5. CONCLUDING REMARKS

In this study, we have shown the reconstruction of the density
matrix of a pure state using expectation values of N observables
consisting of a probability and N − 1 coherences. Our
approach is based on the formalism of maximal entropy where
the constraints for state determination are mean values of
populations and coherences. This method provides us with an
inference of the quantum state which is then compared with
the original state to demonstrate the accuracy of our approach.
Our approach focuses on the maximal entropy formalism of
the scaled pairwise combinations of the known mean
measurements to construct the whole density matrix. It is
worth noting that the pairwise maximum entropy approach is
invariant under the proposed scaling technique and invites a
future fundamental investigation to figure out the origin of this
scaling. The simple nature of our proposed formalism can find
its application in a variety of different areas where quantum
state tomography is essential. We intend to further study this
approach to characterize and mitigate quantum gate errors that
occur when running circuits on IBM’s quantum computing
chips. Also, the current approach to reconstruct the density
matrix is applied and tested for pure states but it can be a good
starting point for the reconstruction of mixed states as well.
This is because the maximum entropy formalism was
developed with mixed states in mind. What we have done is
emphasized applications to pure states because these are often
of interest in quantum computing. However, there are other
physical situations where mixed states are to be expected.
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